wip almost

danderson/art-table
David Anderson 2023-05-11 08:14:06 -07:00
parent fe3604c47c
commit 67a5f45817
3 changed files with 855 additions and 172 deletions

View File

@ -214,7 +214,7 @@ func (t *strideTable[T]) treeDebugString() string {
func (t *strideTable[T]) treeDebugStringRec(w io.Writer, idx, indent int) {
addr, len := inversePrefixIndex(idx)
if t.entries[idx].prefixIndex != 0 && t.entries[idx].prefixIndex == idx {
fmt.Fprintf(w, "%s%d/%d (%d/%d) = %v\n", strings.Repeat(" ", indent), addr, len, addr, len, *t.entries[idx].value)
fmt.Fprintf(w, "%s%d/%d (%02x/%d) = %v\n", strings.Repeat(" ", indent), addr, len, addr, len, *t.entries[idx].value)
indent += 2
}
if idx >= firstHostIndex {

View File

@ -22,6 +22,11 @@ import (
"sync"
)
const (
debugInsert = false
debugDelete = false
)
// Table is an IPv4 and IPv6 routing table.
type Table[T any] struct {
v4 strideTable[T]
@ -114,245 +119,397 @@ func (t *Table[T]) Insert(pfx netip.Prefix, val *T) {
if val == nil {
panic("Table.Insert called with nil value")
}
if debugInsert {
defer func() {
fmt.Printf("%s", t.debugSummary())
}()
}
// The standard library doesn't enforce normalized prefixes (where
// the non-prefix bits are all zero). Our algorithms all require
// normalized prefixes though, so do it upfront.
pfx = pfx.Masked()
if debugInsert {
fmt.Printf("\ninsert: start pfx=%s\n", pfx)
}
st := &t.v4
if pfx.Addr().Is6() {
st = &t.v6
}
bs := pfx.Addr().AsSlice()
i := 0
numBits := pfx.Bits()
// The strideTable we want to insert into is potentially at the end of a
// chain of strideTables, each one encoding successive 8 bits of the prefix.
// This algorithm is full of off-by-one headaches that boil down
// to the fact that pfx.Bits() has (2^n)+1 values, rather than
// just 2^n. For example, an IPv4 prefix length can be 0 through
// 32, which is 33 values.
//
// We're expecting to walk down a path of tables, although with prefix
// compression we may end up skipping some links in the chain, or taking
// wrong turns and having to course correct.
//
// When this loop exits, st points to the strideTable to insert into;
// numBits is the prefix length to insert in the strideTable (0-8), and i is
// the index into bs of the address byte containing the final numBits bits
// of the prefix.
fmt.Printf("process %s i=%d numBits=%d\n", pfx, i, numBits)
findLeafTable:
for numBits > 8 {
fmt.Printf("find %s i=%d numBits=%d\n", pfx, i, numBits)
child, created := st.getOrCreateChild(bs[i])
// At each step of our path through strideTables, one of three things
// can happen:
switch {
case created:
// The path we were on for our prefix stopped at a dead end, a
// subtree we need doesn't exist. The rest of the path, if we were
// to create it, will consist of a bunch of tables with a single
// child. We can use path compression to elide those intermediates,
// and jump straight to the final strideTable that hosts this
// prefix.
if pfx.Bits() == pfx.Addr().BitLen() {
i = len(bs) - 1
numBits = 8
} else {
i = pfx.Bits() / 8
numBits = pfx.Bits() % 8
}
child.prefix = mustPrefix(pfx.Addr(), i*8)
st = child
fmt.Printf("created child table, i=%d numBits=%d childPrefix=%s\n", i, numBits, child.prefix)
break findLeafTable
case !prefixIsChild(child.prefix, pfx):
fmt.Printf("wrong way, child.prefix=%s pfx=%s\n", child.prefix, pfx)
// A child exists, but its prefix is not a parent of pfx. This means
// that this subtree was compressed in service of a different
// prefix, and we are missing an intermediate strideTable that
// differentiates our desired path and the path we've currently
// ended up on.
//
// We can fix this by inserting an intermediate strideTable that
// represents the first non-equal byte of the two prefixes.
// Effectively, we decompress the existing path, insert pfx (which
// creates a new, different subtree somewhere), then recompress the
// entire subtree to end up with 3 strideTables: the one we just
// found, the leaf table we need for pfx, and a common parent that
// distinguishes the two.
intermediatePrefix, addrOfExisting, addrOfNew := computePrefixSplit(child.prefix, pfx)
intermediate := &strideTable[T]{prefix: intermediatePrefix}
st.setChild(bs[i], intermediate)
intermediate.setChild(addrOfExisting, child)
// Is the new intermediate we just made the final resting
// insertion point for the new prefix? It could either
// belong in intermediate, or in a new child of
// intermediate.
if remain := pfx.Bits() - intermediate.prefix.Bits(); remain <= 8 {
// pfx belongs directly in intermediate.
i = pfx.Bits() / 8
if pfx.Bits()%8 == 0 && pfx.Bits() != 0 {
i--
}
numBits = remain
st = intermediate
fmt.Printf("pfx directly in intermediate, %d into %s\n", bs[i], st.prefix)
break findLeafTable
}
// Otherwise, we need a new child subtree hanging off the
// intermediate. By definition this subtree doesn't exist
// yet, which means we can fully compress it and jump from
// the intermediate straight to the final stride that pfx
// needs.
st, created = intermediate.getOrCreateChild(addrOfNew)
if !created {
panic("new child path unexpectedly exists during path decompression")
}
// Having now created a new child for our prefix, we're back in the
// previous case: the rest of the path definitely doesn't exist,
// since we just made it. We just need to set up the new leaf table
// and get it ready for final insertion.
if pfx.Bits() == pfx.Addr().BitLen() {
i = len(bs) - 1
numBits = 8
} else {
i = pfx.Bits() / 8
numBits = pfx.Bits() % 8
}
st.prefix = mustPrefix(pfx.Addr(), i*8)
fmt.Printf("created intermediate table, i=%d numBits=%d intermediate=%s childPrefix=%s\n", i, numBits, intermediate.prefix, st.prefix)
break findLeafTable
default:
// An expected child table exists along pfx's path. Continue traversing
// downwards, or exit the loop if we run out of prefix bits and this
// child is the leaf we should insert into.
st = child
i++
numBits -= 8
fmt.Printf("walking down, i=%d numBits=%d childPrefix=%s\n", i, numBits, st.prefix)
// This extra possible value creates all kinds of headaches as we
// do bits and bytes math to traverse strideTables below. So, we
// treat the default route 0/0 specially here, that way the rest
// of the logic goes back to having 2^n values to reason about,
// which can be done in a nice and regular fashion with no edge
// cases.
if pfx.Bits() == 0 {
if debugInsert {
fmt.Printf("insert: default route\n")
}
st.insert(0, 0, val)
return
}
fmt.Printf("inserting %s i=%d numBits=%d\n\n", pfx, i, numBits)
// Finally, insert the remaining 0-8 bits of the prefix into the child
// table.
st.insert(bs[i], numBits, val)
bs := pfx.Addr().AsSlice()
// No matter what we do as we traverse strideTables, our final
// action will be to insert the last 1-8 bits of pfx into a
// strideTable somewhere.
//
// We calculate upfront the byte position in bs of the end of the
// prefix; the number of bits within that byte that contain prefix
// data; and the prefix owned by the strideTable into which we'll
// eventually insert.
//
// We need this in a couple different branches of the code below,
// and because the possible values are 1-indexed (1 through 32 for
// ipv4, 1 through 128 for ipv6), the math is very slightly
// unusual to account for the off-by-one indexing. Do it once up
// here, with this large comment, rather than reproduce the subtle
// math in multiple places further down.
finalByteIdx := (pfx.Bits() - 1) / 8
finalBits := pfx.Bits() - (finalByteIdx * 8)
finalStridePrefix := mustPrefix(pfx.Addr(), finalByteIdx*8)
if debugInsert {
fmt.Printf("insert: finalByteIdx=%d finalBits=%d finalStridePrefix=%s\n", finalByteIdx, finalBits, finalStridePrefix)
}
// The strideTable we want to insert into is potentially at the
// end of a chain of strideTables, each one encoding 8 bits of the
// prefix.
//
// We're expecting to walk down a path of tables, although with
// prefix compression we may end up skipping some links in the
// chain, or taking wrong turns and having to course correct.
//
// As we walk down the tree, byteIdx is the byte of bs we're
// currently examining to choose our next step, and numBits is the
// number of bits that remain in pfx, starting with the byte at
// byteIdx inclusive.
byteIdx := 0
numBits := pfx.Bits()
for {
if debugInsert {
fmt.Printf("insert: loop byteIdx=%d numBits=%d st.prefix=%s\n", byteIdx, numBits, st.prefix)
}
if numBits <= 8 {
if debugInsert {
fmt.Printf("insert: existing leaf st.prefix=%s addr=%d/%d\n", st.prefix, bs[finalByteIdx], finalBits)
}
// We've reached the end of the prefix, whichever
// strideTable we're looking at now is the place where we
// need to insert.
st.insert(bs[finalByteIdx], finalBits, val)
return
}
// Otherwise, we need to go down at least one more level of
// strideTables. With prefix compression, each level of
// descent can have one of three outcomes: we find a place
// where prefix compression is possible; a place where prefix
// compression made us take a "wrong turn"; or a point along
// our intended path that we have to keep following.
child, created := st.getOrCreateChild(bs[byteIdx])
switch {
case created:
// The subtree we need for pfx doesn't exist yet. The rest
// of the path, if we were to create it, will consist of a
// bunch of strideTables with a single child. We can use
// path compression to elide those intermediates, and jump
// straight to the final strideTable that hosts this
// prefix.
child.prefix = finalStridePrefix
child.insert(bs[finalByteIdx], finalBits, val)
if debugInsert {
fmt.Printf("insert: new leaf st.prefix=%s child.prefix=%s addr=%d/%d\n", st.prefix, child.prefix, bs[finalByteIdx], finalBits)
}
return
case child.prefix == pfx:
// Edge case, /16 vs. /24
// Still fucked, rerun TestDeleteCompare to figure out why
intermediatePrefix, _ := pfx.Addr().Prefix(pfx.Bits() - 8)
intermediate := &strideTable[T]{prefix: intermediatePrefix}
st.setChild(bs[byteIdx], intermediate)
intermediate.setChild(bs[child.prefix.Bits()/8], child)
intermediate.insert(bs[finalByteIdx], finalBits, val)
return
case !prefixContains(child.prefix, pfx):
// child already exists, but its prefix does not contain
// pfx. This means that the path between st and child was
// compressed by a previous insertion, and somewhere in
// the (implicit) compressed path we took a wrong turn,
// into the wrong part of st's subtree.
//
// This is okay, because pfx and child.prefix must have a
// common ancestor node somewhere between st and child. We
// can figure out what node that is, materialize it
// between st and child, and resume from there.
intermediatePrefix, addrOfExisting, addrOfNew := computePrefixSplit(child.prefix, pfx)
intermediate := &strideTable[T]{prefix: intermediatePrefix} // TODO: make this whole thing be st.AddIntermediate or something?
st.setChild(bs[byteIdx], intermediate)
intermediate.setChild(addrOfExisting, child)
if debugInsert {
fmt.Printf("insert: new intermediate st.prefix=%s intermediate.prefix=%s child.prefix=%s\n", st.prefix, intermediate.prefix, child.prefix)
}
// Now, we have a chain of st -> intermediate -> child.
//
// pfx either lives in a different child of intermediate,
// or in intermediate itself. For example, if we created
// the intermediate 1.2.0.0/16, pfx=1.2.3.4/32 would have
// to go into a new child of intermediate, but
// pfx=1.2.0.0/18 would go into intermediate directly.
if remain := pfx.Bits() - intermediate.prefix.Bits(); remain <= 8 {
if debugInsert {
fmt.Printf("insert: into intermediate intermediate.prefix=%s addr=%d/%d\n", intermediate.prefix, bs[finalByteIdx], finalBits)
}
// pfx lives in intermediate.
intermediate.insert(bs[finalByteIdx], finalBits, val)
} else {
// pfx lives in a different child subtree of
// intermediate. By definition this subtree doesn't
// exist at all, otherwise we'd never have entereed
// this entire "wrong turn" codepath in the first
// place.
//
// This means we can apply prefix compression as we
// create this new child, and we're done.
st, created = intermediate.getOrCreateChild(addrOfNew)
if !created {
panic("new child path unexpectedly exists during path decompression")
}
st.prefix = finalStridePrefix
st.insert(bs[finalByteIdx], finalBits, val)
if debugInsert {
fmt.Printf("insert: new child st.prefix=%s addr=%d/%d\n", st.prefix, bs[finalByteIdx], finalBits)
}
}
return
default:
// An expected child table exists along pfx's
// path. Continue traversing downwards.
st = child
byteIdx = child.prefix.Bits() / 8
numBits = pfx.Bits() - child.prefix.Bits()
if debugInsert {
fmt.Printf("insert: descend st.prefix=%s\n", st.prefix)
}
}
}
}
// Delete removes pfx from the table, if it is present.
func (t *Table[T]) Delete(pfx netip.Prefix) {
t.init()
// The standard library doesn't enforce normalized prefixes (where
// the non-prefix bits are all zero). Our algorithms all require
// normalized prefixes though, so do it upfront.
pfx = pfx.Masked()
if debugDelete {
defer func() {
fmt.Printf("%s", t.debugSummary())
}()
fmt.Printf("\ndelete: start pfx=%s table:\n%s", pfx, t.debugSummary())
}
st := &t.v4
if pfx.Addr().Is6() {
st = &t.v6
}
bs := pfx.Addr().AsSlice()
i := 0
numBits := pfx.Bits()
// Deletion may drive the refcount of some strideTables down to zero. We
// need to clean up these dangling tables, so we have to keep track of which
// tables we touch on the way down, and which strideEntry index each child
// is registered in.
// Deletion may drive the refcount of some strideTables down to
// zero. We need to clean up these dangling tables, so we have to
// keep track of which tables we touch on the way down, and which
// strideEntry index each child is registered in.
strideIdx := 0
strideTables := [16]*strideTable[T]{st}
strideIndexes := [16]int{}
// Similar to Insert, navigate down the tree of strideTables, looking for
// the one that houses this prefix. This part is easier than with insertion,
// since we can bail if the path ends early or takes an unexpected detour.
// However, unlike insertion, there's a whole post-deletion cleanup phase
// later on.
// Similar to Insert, navigate down the tree of strideTables,
// looking for the one that houses this prefix. This part is
// easier than with insertion, since we can bail if the path ends
// early or takes an unexpected detour. However, unlike
// insertion, there's a whole post-deletion cleanup phase later
// on.
//
// As we walk down the tree, byteIdx is the byte of bs we're
// currently examining to choose our next step, and numBits is the
// number of bits that remain in pfx, starting with the byte at
// byteIdx inclusive.
bs := pfx.Addr().AsSlice()
byteIdx := 0
numBits := pfx.Bits()
for numBits > 8 {
child, idx := st.getChild(bs[i])
if debugDelete {
fmt.Printf("delete: loop byteIdx=%d numBits=%d st.prefix=%s\n", byteIdx, numBits, st.prefix)
}
child, idx := st.getChild(bs[byteIdx])
if child == nil {
// Prefix can't exist in the table, one of the necessary
// strideTables doesn't exist.
if debugDelete {
fmt.Printf("delete: missing needed child pfx=%s\n", pfx)
}
return
}
// Note that the strideIndex and strideTables entries are off-by-one.
// The child table pointer is recorded at i+1, but it is referenced by a
// particular index in the parent table, at index i.
strideIndexes[strideIdx] = idx
strideTables[strideIdx+1] = child
strideIdx++
strideTables[strideIdx] = child
i = child.prefix.Bits() / 8
// Path compression means byteIdx can jump forwards
// unpredictably. Recompute the next byte to look at from the
// child we just found.
byteIdx = child.prefix.Bits() / 8
numBits = pfx.Bits() - child.prefix.Bits()
st = child
if debugDelete {
fmt.Printf("delete: descend st.prefix=%s\n", st.prefix)
}
}
// We reached a leaf stride table that seems to be in the right spot. But
// path compression might have led us to the wrong table. Or, we might be in
// the right place, but the strideTable just doesn't contain the prefix at
// all.
if !prefixIsChild(st.prefix, pfx) {
// Wrong table, the requested prefix can't exist since its path led us
// to the wrong place.
// We reached a leaf stride table that seems to be in the right
// spot. But path compression might have led us to the wrong
// table. Or, we might be in the right place, but the strideTable
// just doesn't contain the prefix at all.
if !prefixContains(st.prefix, pfx) {
// Wrong table, the requested prefix can't exist since its
// path led us to the wrong place.
if debugDelete {
fmt.Printf("delete: wrong leaf table pfx=%s\n", pfx)
}
return
}
if st.delete(bs[i], numBits) == nil {
// We're in the right strideTable, but pfx wasn't in it. Refcount hasn't
// changed, so no need to run through cleanup.
if debugDelete {
fmt.Printf("delete: delete from st.prefix=%s addr=%d/%d\n", st.prefix, bs[byteIdx], numBits)
}
if st.delete(bs[byteIdx], numBits) == nil {
// We're in the right strideTable, but pfx wasn't in
// it. Refcounts haven't changed, so no need to run through
// cleanup.
if debugDelete {
fmt.Printf("delete: prefix not present pfx=%s\n", pfx)
}
return
}
// st.delete reduced st's refcount by one. This table may now be
// reclaimable, and depending on how we can reclaim it, the parent tables
// may also need to be considered for reclamation. This loop ends as soon as
// take no action, or take an action that doesn't alter the parent table's
// refcounts.
for i > 0 {
if strideTables[i].routeRefs > 0 {
// the strideTable has route entries, it cannot be deleted or
// compacted.
// reclaimable, and depending on how we can reclaim it, the parent
// tables may also need to be considered for reclamation. This
// loop ends as soon as an iteration takes no action, or takes an
// action that doesn't alter the parent table's refcounts.
//
// We start our walk back at strideTables[strideIdx], which
// contains st.
for strideIdx > 0 {
cur := strideTables[strideIdx]
if debugDelete {
fmt.Printf("delete: GC strideIdx=%d st.prefix=%s\n", strideIdx, cur.prefix)
}
if cur.routeRefs > 0 {
// the strideTable has route entries, it cannot be deleted
// or compacted.
if debugDelete {
fmt.Printf("delete: has other routes st.prefix=%s\n", cur.prefix)
}
return
}
switch strideTables[i].childRefs {
switch cur.childRefs {
case 0:
// no routeRefs and no childRefs, this table can be deleted. This
// will alter the parent table's refcount, so we'll have to look at
// it as well (in the next loop iteration).
strideTables[i-1].deleteChild(strideIndexes[i-1])
i--
// no routeRefs and no childRefs, this table can be
// deleted. This will alter the parent table's refcount,
// so we'll have to look at it as well (in the next loop
// iteration).
if debugDelete {
fmt.Printf("delete: remove st.prefix=%s\n", cur.prefix)
}
strideTables[strideIdx-1].deleteChild(strideIndexes[strideIdx-1])
strideIdx--
case 1:
// This table has no routes, and a single child. Compact this table
// out of existence by making the parent point directly at the
// child. This does not affect the parent's refcounts, so the parent
// can't be eligible for deletion or compaction, and we can stop.
strideTables[i-1].setChildByIdx(strideIndexes[i-1], strideTables[i].findFirstChild())
// This table has no routes, and a single child. Compact
// this table out of existence by making the parent point
// directly at the one child. This does not affect the
// parent's refcounts, so the parent can't be eligible for
// deletion or compaction, and we can stop.
child := strideTables[strideIdx].findFirstChild()
parent := strideTables[strideIdx-1]
if debugDelete {
fmt.Printf("delete: compact parent.prefix=%s st.prefix=%s child.prefix=%s\n", parent.prefix, cur.prefix, child.prefix)
}
strideTables[strideIdx-1].setChildByIdx(strideIndexes[strideIdx-1], child)
return
default:
// This table has two or more children, so it's acting as a "fork in
// the road" between two prefix subtrees. It cannot be deleted, and
// thus no further cleanups are possible.
if debugDelete {
fmt.Printf("delete: fork table st.prefix=%s\n", cur.prefix)
}
return
}
}
}
func (t *Table[T]) numStrides() int {
seen := map[*strideTable[T]]bool{}
return t.numStridesRec(seen, &t.v4) + t.numStridesRec(seen, &t.v6)
}
func (t *Table[T]) numStridesRec(seen map[*strideTable[T]]bool, st *strideTable[T]) int {
ret := 1
if st.childRefs == 0 {
return ret
}
for i := firstHostIndex; i <= lastHostIndex; i++ {
if c := st.entries[i].child; c != nil && !seen[c] {
seen[c] = true
ret += t.numStridesRec(seen, c)
}
}
return ret
}
// debugSummary prints the tree of allocated strideTables in t, with each
// strideTable's refcount.
func (t *Table[T]) debugSummary() string {
t.init()
var ret bytes.Buffer
fmt.Fprintf(&ret, "v4: ")
strideSummary(&ret, &t.v4, 0)
strideSummary(&ret, &t.v4, 4)
fmt.Fprintf(&ret, "v6: ")
strideSummary(&ret, &t.v6, 0)
strideSummary(&ret, &t.v6, 4)
return ret.String()
}
func strideSummary[T any](w io.Writer, st *strideTable[T], indent int) {
fmt.Fprintf(w, "%s: %d routes, %d children\n", st.prefix, st.routeRefs, st.childRefs)
indent += 2
indent += 4
st.treeDebugStringRec(w, 1, indent)
for i := firstHostIndex; i <= lastHostIndex; i++ {
if child := st.entries[i].child; child != nil {
addr, len := inversePrefixIndex(i)
fmt.Fprintf(w, "%s%d/%d: ", strings.Repeat(" ", indent), addr, len)
fmt.Fprintf(w, "%s%d/%d (%02x/%d): ", strings.Repeat(" ", indent), addr, len, addr, len)
strideSummary(w, child, indent)
}
}
}
func prefixIsChild(parent, child netip.Prefix) bool {
func prefixContains(parent, child netip.Prefix) bool {
return parent.Overlaps(child) && parent.Bits() < child.Bits()
}
@ -375,18 +532,14 @@ func computePrefixSplit(a, b netip.Prefix) (lastCommon netip.Prefix, aStride, bS
if a.Addr().Is4() != b.Addr().Is4() {
panic("computePrefixSplit called with mismatched address families")
}
fmt.Printf("split: %s vs. %s\n", a, b)
minPrefixLen := a.Bits()
if b.Bits() < minPrefixLen {
minPrefixLen = b.Bits()
}
fmt.Printf("maxbits=%d\n", minPrefixLen)
commonStrides := commonStrides(a.Addr(), b.Addr(), minPrefixLen)
fmt.Printf("commonstrides=%d\n", commonStrides)
lastCommon, err := a.Addr().Prefix(commonStrides * 8)
fmt.Printf("lastCommon=%s\n", lastCommon)
if err != nil {
panic(fmt.Sprintf("computePrefixSplit constructing common prefix: %v", err))
}
@ -397,7 +550,6 @@ func computePrefixSplit(a, b netip.Prefix) (lastCommon netip.Prefix, aStride, bS
aStride = a.Addr().As16()[commonStrides]
bStride = b.Addr().As16()[commonStrides]
}
fmt.Printf("aStride=%d, bStride=%d\n", aStride, bStride)
return lastCommon, aStride, bStride
}

View File

@ -16,10 +16,526 @@ import (
"tailscale.com/types/ptr"
)
func TestRegression(t *testing.T) {
tbl := &Table[int]{}
slow := slowPrefixTable[int]{}
p := netip.MustParsePrefix
v := ptr.To(1)
tbl.Insert(p("226.205.197.0/24"), v)
slow.insert(p("226.205.197.0/24"), v)
v = ptr.To(2)
tbl.Insert(p("226.205.0.0/16"), v)
slow.insert(p("226.205.0.0/16"), v)
probe := netip.MustParseAddr("226.205.121.152")
got, want := tbl.Get(probe), slow.get(probe)
if got != want {
t.Fatalf("got %v, want %v", got, want)
}
}
func TestInsert(t *testing.T) {
tbl := &Table[int]{}
p := netip.MustParsePrefix
// Create a new leaf strideTable, with compressed path
tbl.Insert(p("192.168.0.1/32"), ptr.To(1))
checkRoutes(t, tbl, []tableTest{
{"192.168.0.1", 1},
{"192.168.0.2", -1},
{"192.168.0.3", -1},
{"192.168.0.255", -1},
{"192.168.1.1", -1},
{"192.170.1.1", -1},
{"192.180.0.1", -1},
{"192.180.3.5", -1},
{"10.0.0.5", -1},
{"10.0.0.15", -1},
})
// Insert into previous leaf, no tree changes
tbl.Insert(p("192.168.0.2/32"), ptr.To(2))
checkRoutes(t, tbl, []tableTest{
{"192.168.0.1", 1},
{"192.168.0.2", 2},
{"192.168.0.3", -1},
{"192.168.0.255", -1},
{"192.168.1.1", -1},
{"192.170.1.1", -1},
{"192.180.0.1", -1},
{"192.180.3.5", -1},
{"10.0.0.5", -1},
{"10.0.0.15", -1},
})
// Insert into previous leaf, unaligned prefix covering the /32s
tbl.Insert(p("192.168.0.0/26"), ptr.To(7))
checkRoutes(t, tbl, []tableTest{
{"192.168.0.1", 1},
{"192.168.0.2", 2},
{"192.168.0.3", 7},
{"192.168.0.255", -1},
{"192.168.1.1", -1},
{"192.170.1.1", -1},
{"192.180.0.1", -1},
{"192.180.3.5", -1},
{"10.0.0.5", -1},
{"10.0.0.15", -1},
})
// Create a different leaf elsewhere
tbl.Insert(p("10.0.0.0/27"), ptr.To(3))
checkRoutes(t, tbl, []tableTest{
{"192.168.0.1", 1},
{"192.168.0.2", 2},
{"192.168.0.3", 7},
{"192.168.0.255", -1},
{"192.168.1.1", -1},
{"192.170.1.1", -1},
{"192.180.0.1", -1},
{"192.180.3.5", -1},
{"10.0.0.5", 3},
{"10.0.0.15", 3},
})
// Insert that creates a new intermediate table and a new child
tbl.Insert(p("192.168.1.1/32"), ptr.To(4))
checkRoutes(t, tbl, []tableTest{
{"192.168.0.1", 1},
{"192.168.0.2", 2},
{"192.168.0.3", 7},
{"192.168.0.255", -1},
{"192.168.1.1", 4},
{"192.170.1.1", -1},
{"192.180.0.1", -1},
{"192.180.3.5", -1},
{"10.0.0.5", 3},
{"10.0.0.15", 3},
})
// Insert that creates a new intermediate table but no new child
tbl.Insert(p("192.170.0.0/16"), ptr.To(5))
checkRoutes(t, tbl, []tableTest{
{"192.168.0.1", 1},
{"192.168.0.2", 2},
{"192.168.0.3", 7},
{"192.168.0.255", -1},
{"192.168.1.1", 4},
{"192.170.1.1", 5},
{"192.180.0.1", -1},
{"192.180.3.5", -1},
{"10.0.0.5", 3},
{"10.0.0.15", 3},
})
// New leaf in a different subtree, so the next insert can test a
// variant of decompression.
tbl.Insert(p("192.180.0.1/32"), ptr.To(8))
checkRoutes(t, tbl, []tableTest{
{"192.168.0.1", 1},
{"192.168.0.2", 2},
{"192.168.0.3", 7},
{"192.168.0.255", -1},
{"192.168.1.1", 4},
{"192.170.1.1", 5},
{"192.180.0.1", 8},
{"192.180.3.5", -1},
{"10.0.0.5", 3},
{"10.0.0.15", 3},
})
// Insert that creates a new intermediate table but no new child,
// with an unaligned intermediate
tbl.Insert(p("192.180.0.0/21"), ptr.To(9))
checkRoutes(t, tbl, []tableTest{
{"192.168.0.1", 1},
{"192.168.0.2", 2},
{"192.168.0.3", 7},
{"192.168.0.255", -1},
{"192.168.1.1", 4},
{"192.170.1.1", 5},
{"192.180.0.1", 8},
{"192.180.3.5", 9},
{"10.0.0.5", 3},
{"10.0.0.15", 3},
})
// Insert a default route, those have their own codepath.
tbl.Insert(p("0.0.0.0/0"), ptr.To(6))
checkRoutes(t, tbl, []tableTest{
{"192.168.0.1", 1},
{"192.168.0.2", 2},
{"192.168.0.3", 7},
{"192.168.0.255", 6},
{"192.168.1.1", 4},
{"192.170.1.1", 5},
{"192.180.0.1", 8},
{"192.180.3.5", 9},
{"10.0.0.5", 3},
{"10.0.0.15", 3},
})
// Now all of the above again, but for IPv6.
// Create a new leaf strideTable, with compressed path
tbl.Insert(p("ff:aaaa::1/128"), ptr.To(1))
checkRoutes(t, tbl, []tableTest{
{"ff:aaaa::1", 1},
{"ff:aaaa::2", -1},
{"ff:aaaa::3", -1},
{"ff:aaaa::255", -1},
{"ff:aaaa:aaaa::1", -1},
{"ff:aaaa:aaaa:bbbb::1", -1},
{"ff:cccc::1", -1},
{"ff:cccc::ff", -1},
{"ffff:bbbb::5", -1},
{"ffff:bbbb::15", -1},
})
// Insert into previous leaf, no tree changes
tbl.Insert(p("ff:aaaa::2/128"), ptr.To(2))
checkRoutes(t, tbl, []tableTest{
{"ff:aaaa::1", 1},
{"ff:aaaa::2", 2},
{"ff:aaaa::3", -1},
{"ff:aaaa::255", -1},
{"ff:aaaa:aaaa::1", -1},
{"ff:aaaa:aaaa:bbbb::1", -1},
{"ff:cccc::1", -1},
{"ff:cccc::ff", -1},
{"ffff:bbbb::5", -1},
{"ffff:bbbb::15", -1},
})
// Insert into previous leaf, unaligned prefix covering the /128s
tbl.Insert(p("ff:aaaa::/125"), ptr.To(7))
checkRoutes(t, tbl, []tableTest{
{"ff:aaaa::1", 1},
{"ff:aaaa::2", 2},
{"ff:aaaa::3", 7},
{"ff:aaaa::255", -1},
{"ff:aaaa:aaaa::1", -1},
{"ff:aaaa:aaaa:bbbb::1", -1},
{"ff:cccc::1", -1},
{"ff:cccc::ff", -1},
{"ffff:bbbb::5", -1},
{"ffff:bbbb::15", -1},
})
// Create a different leaf elsewhere
tbl.Insert(p("ffff:bbbb::/120"), ptr.To(3))
checkRoutes(t, tbl, []tableTest{
{"ff:aaaa::1", 1},
{"ff:aaaa::2", 2},
{"ff:aaaa::3", 7},
{"ff:aaaa::255", -1},
{"ff:aaaa:aaaa::1", -1},
{"ff:aaaa:aaaa:bbbb::1", -1},
{"ff:cccc::1", -1},
{"ff:cccc::ff", -1},
{"ffff:bbbb::5", 3},
{"ffff:bbbb::15", 3},
})
// Insert that creates a new intermediate table and a new child
tbl.Insert(p("ff:aaaa:aaaa::1/128"), ptr.To(4))
checkRoutes(t, tbl, []tableTest{
{"ff:aaaa::1", 1},
{"ff:aaaa::2", 2},
{"ff:aaaa::3", 7},
{"ff:aaaa::255", -1},
{"ff:aaaa:aaaa::1", 4},
{"ff:aaaa:aaaa:bbbb::1", -1},
{"ff:cccc::1", -1},
{"ff:cccc::ff", -1},
{"ffff:bbbb::5", 3},
{"ffff:bbbb::15", 3},
})
// Insert that creates a new intermediate table but no new child
tbl.Insert(p("ff:aaaa:aaaa:bb00::/56"), ptr.To(5))
checkRoutes(t, tbl, []tableTest{
{"ff:aaaa::1", 1},
{"ff:aaaa::2", 2},
{"ff:aaaa::3", 7},
{"ff:aaaa::255", -1},
{"ff:aaaa:aaaa::1", 4},
{"ff:aaaa:aaaa:bbbb::1", 5},
{"ff:cccc::1", -1},
{"ff:cccc::ff", -1},
{"ffff:bbbb::5", 3},
{"ffff:bbbb::15", 3},
})
// New leaf in a different subtree, so the next insert can test a
// variant of decompression.
tbl.Insert(p("ff:cccc::1/128"), ptr.To(8))
checkRoutes(t, tbl, []tableTest{
{"ff:aaaa::1", 1},
{"ff:aaaa::2", 2},
{"ff:aaaa::3", 7},
{"ff:aaaa::255", -1},
{"ff:aaaa:aaaa::1", 4},
{"ff:aaaa:aaaa:bbbb::1", 5},
{"ff:cccc::1", 8},
{"ff:cccc::ff", -1},
{"ffff:bbbb::5", 3},
{"ffff:bbbb::15", 3},
})
// Insert that creates a new intermediate table but no new child,
// with an unaligned intermediate
tbl.Insert(p("ff:cccc::/37"), ptr.To(9))
checkRoutes(t, tbl, []tableTest{
{"ff:aaaa::1", 1},
{"ff:aaaa::2", 2},
{"ff:aaaa::3", 7},
{"ff:aaaa::255", -1},
{"ff:aaaa:aaaa::1", 4},
{"ff:aaaa:aaaa:bbbb::1", 5},
{"ff:cccc::1", 8},
{"ff:cccc::ff", 9},
{"ffff:bbbb::5", 3},
{"ffff:bbbb::15", 3},
})
// Insert a default route, those have their own codepath.
tbl.Insert(p("::/0"), ptr.To(6))
checkRoutes(t, tbl, []tableTest{
{"ff:aaaa::1", 1},
{"ff:aaaa::2", 2},
{"ff:aaaa::3", 7},
{"ff:aaaa::255", 6},
{"ff:aaaa:aaaa::1", 4},
{"ff:aaaa:aaaa:bbbb::1", 5},
{"ff:cccc::1", 8},
{"ff:cccc::ff", 9},
{"ffff:bbbb::5", 3},
{"ffff:bbbb::15", 3},
})
}
func checkRoutes(t *testing.T, tbl *Table[int], tt []tableTest) {
t.Helper()
for _, tc := range tt {
v := tbl.Get(netip.MustParseAddr(tc.addr))
if v == nil && tc.want != -1 {
t.Errorf("lookup %q got nil, want %d", tc.addr, tc.want)
}
if v != nil && *v != tc.want {
t.Errorf("lookup %q got %d, want %d", tc.addr, *v, tc.want)
}
}
}
func checkSize(t *testing.T, tbl *Table[int], want int) {
t.Helper()
if got := tbl.numStrides(); got != want {
t.Errorf("wrong table size, got %d strides want %d", got, want)
}
}
type tableTest struct {
addr string
want int
}
func TestDelete(t *testing.T) {
t.Parallel()
fmt.Printf("START\n")
pfxs := randomPrefixes(20)[:10]
p := netip.MustParsePrefix
t.Run("prefix_in_root", func(t *testing.T) {
// Add/remove prefix from root table.
tbl := &Table[int]{}
checkSize(t, tbl, 2)
tbl.Insert(p("10.0.0.0/8"), ptr.To(1))
checkRoutes(t, tbl, []tableTest{
{"10.0.0.1", 1},
{"255.255.255.255", -1},
})
checkSize(t, tbl, 2)
tbl.Delete(p("10.0.0.0/8"))
checkRoutes(t, tbl, []tableTest{
{"10.0.0.1", -1},
{"255.255.255.255", -1},
})
checkSize(t, tbl, 2)
})
t.Run("prefix_in_leaf", func(t *testing.T) {
// Create, then delete a single leaf table.
tbl := &Table[int]{}
checkSize(t, tbl, 2)
tbl.Insert(p("192.168.0.1/32"), ptr.To(1))
checkRoutes(t, tbl, []tableTest{
{"192.168.0.1", 1},
{"255.255.255.255", -1},
})
checkSize(t, tbl, 3)
tbl.Delete(p("192.168.0.1/32"))
checkRoutes(t, tbl, []tableTest{
{"192.168.0.1", -1},
{"255.255.255.255", -1},
})
checkSize(t, tbl, 2)
})
t.Run("intermediate_no_routes", func(t *testing.T) {
// Create an intermediate with 2 children, then delete one leaf.
tbl := &Table[int]{}
checkSize(t, tbl, 2)
tbl.Insert(p("192.168.0.1/32"), ptr.To(1))
tbl.Insert(p("192.180.0.1/32"), ptr.To(2))
checkRoutes(t, tbl, []tableTest{
{"192.168.0.1", 1},
{"192.180.0.1", 2},
{"192.40.0.1", -1},
})
checkSize(t, tbl, 5) // 2 roots, 1 intermediate, 2 leaves
tbl.Delete(p("192.180.0.1/32"))
checkRoutes(t, tbl, []tableTest{
{"192.168.0.1", 1},
{"192.180.0.1", -1},
{"192.40.0.1", -1},
})
checkSize(t, tbl, 3) // 2 roots, 1 leaf
})
t.Run("intermediate_with_route", func(t *testing.T) {
// Same, but the intermediate carries a route as well.
tbl := &Table[int]{}
checkSize(t, tbl, 2)
tbl.Insert(p("192.168.0.1/32"), ptr.To(1))
tbl.Insert(p("192.180.0.1/32"), ptr.To(2))
tbl.Insert(p("192.0.0.0/10"), ptr.To(3))
checkRoutes(t, tbl, []tableTest{
{"192.168.0.1", 1},
{"192.180.0.1", 2},
{"192.40.0.1", 3},
{"192.255.0.1", -1},
})
checkSize(t, tbl, 5) // 2 roots, 1 intermediate, 2 leaves
tbl.Delete(p("192.180.0.1/32"))
checkRoutes(t, tbl, []tableTest{
{"192.168.0.1", 1},
{"192.180.0.1", -1},
{"192.40.0.1", 3},
{"192.255.0.1", -1},
})
checkSize(t, tbl, 4) // 2 roots, 1 intermediate w/route, 1 leaf
})
t.Run("intermediate_many_leaves", func(t *testing.T) {
// Intermediate with 3 leaves, then delete one leaf.
tbl := &Table[int]{}
checkSize(t, tbl, 2)
tbl.Insert(p("192.168.0.1/32"), ptr.To(1))
tbl.Insert(p("192.180.0.1/32"), ptr.To(2))
tbl.Insert(p("192.200.0.1/32"), ptr.To(3))
checkRoutes(t, tbl, []tableTest{
{"192.168.0.1", 1},
{"192.180.0.1", 2},
{"192.200.0.1", 3},
{"192.255.0.1", -1},
})
checkSize(t, tbl, 6) // 2 roots, 1 intermediate, 3 leaves
tbl.Delete(p("192.180.0.1/32"))
checkRoutes(t, tbl, []tableTest{
{"192.168.0.1", 1},
{"192.180.0.1", -1},
{"192.200.0.1", 3},
{"192.255.0.1", -1},
})
checkSize(t, tbl, 5) // 2 roots, 1 intermediate, 2 leaves
})
t.Run("nosuchprefix_missing_child", func(t *testing.T) {
// Delete non-existent prefix, missing strideTable path.
tbl := &Table[int]{}
checkSize(t, tbl, 2)
tbl.Insert(p("192.168.0.1/32"), ptr.To(1))
checkRoutes(t, tbl, []tableTest{
{"192.168.0.1", 1},
{"192.255.0.1", -1},
})
checkSize(t, tbl, 3) // 2 roots, 1 leaf
tbl.Delete(p("200.0.0.0/32")) // lookup miss in root
checkRoutes(t, tbl, []tableTest{
{"192.168.0.1", 1},
{"192.255.0.1", -1},
})
checkSize(t, tbl, 3) // 2 roots, 1 leaf
})
t.Run("nosuchprefix_wrong_turn", func(t *testing.T) {
// Delete non-existent prefix, strideTable path exists but
// with a wrong turn.
tbl := &Table[int]{}
checkSize(t, tbl, 2)
tbl.Insert(p("192.168.0.1/32"), ptr.To(1))
checkRoutes(t, tbl, []tableTest{
{"192.168.0.1", 1},
{"192.255.0.1", -1},
})
checkSize(t, tbl, 3) // 2 roots, 1 leaf
tbl.Delete(p("192.40.0.0/32")) // finds wrong child
checkRoutes(t, tbl, []tableTest{
{"192.168.0.1", 1},
{"192.255.0.1", -1},
})
checkSize(t, tbl, 3) // 2 roots, 1 leaf
})
t.Run("nosuchprefix_not_in_leaf", func(t *testing.T) {
// Delete non-existent prefix, strideTable path exists but
// leaf doesn't contain route.
tbl := &Table[int]{}
checkSize(t, tbl, 2)
tbl.Insert(p("192.168.0.1/32"), ptr.To(1))
checkRoutes(t, tbl, []tableTest{
{"192.168.0.1", 1},
{"192.255.0.1", -1},
})
checkSize(t, tbl, 3) // 2 roots, 1 leaf
tbl.Delete(p("192.168.0.5/32")) // right leaf, no route
checkRoutes(t, tbl, []tableTest{
{"192.168.0.1", 1},
{"192.255.0.1", -1},
})
checkSize(t, tbl, 3) // 2 roots, 1 leaf
})
t.Run("intermediate_with_deleted_route", func(t *testing.T) {
// Intermediate table loses its last route and becomes
// compactable.
tbl := &Table[int]{}
checkSize(t, tbl, 2)
tbl.Insert(p("192.168.0.1/32"), ptr.To(1))
tbl.Insert(p("192.168.0.0/22"), ptr.To(2))
checkRoutes(t, tbl, []tableTest{
{"192.168.0.1", 1},
{"192.168.0.2", 2},
{"192.255.0.1", -1},
})
checkSize(t, tbl, 4) // 2 roots, 1 intermediate w/route, 1 leaf
tbl.Delete(p("192.168.0.0/22"))
checkRoutes(t, tbl, []tableTest{
{"192.168.0.1", 1},
{"192.168.0.2", -1},
{"192.255.0.1", -1},
})
checkSize(t, tbl, 3) // 2 roots, 1 leaf
})
}
func TestInsertCompare(t *testing.T) {
// Create large route tables repeatedly, and compare Table's
// behavior to a naive and slow but correct implementation.
t.Parallel()
pfxs := randomPrefixes(10_000)
slow := slowPrefixTable[int]{pfxs}
fast := Table[int]{}
@ -50,16 +566,16 @@ func TestInsert(t *testing.T) {
// check that we didn't just return a single route for everything should be
// very generous indeed.
if cnt := len(seenVals4); cnt < 10 {
//t.Fatalf("saw %d distinct v4 route results, statistically expected ~1000", cnt)
t.Fatalf("saw %d distinct v4 route results, statistically expected ~1000", cnt)
}
if cnt := len(seenVals6); cnt < 10 {
//t.Fatalf("saw %d distinct v6 route results, statistically expected ~300", cnt)
t.Fatalf("saw %d distinct v6 route results, statistically expected ~300", cnt)
}
}
func TestInsertShuffled(t *testing.T) {
t.Parallel()
pfxs := randomPrefixes(10_000)
pfxs := randomPrefixes(100)
rt := Table[int]{}
for _, pfx := range pfxs {
@ -80,6 +596,9 @@ func TestInsertShuffled(t *testing.T) {
a := randomAddr()
val1 := rt.Get(a)
val2 := rt2.Get(a)
if val1 == nil && val2 == nil {
continue
}
if (val1 == nil && val2 != nil) || (val1 != nil && val2 == nil) || (*val1 != *val2) {
t.Errorf("get(%q) = %s, want %s", a, printIntPtr(val2), printIntPtr(val1))
}
@ -87,7 +606,7 @@ func TestInsertShuffled(t *testing.T) {
}
}
func TestDelete(t *testing.T) {
func TestDeleteCompare(t *testing.T) {
t.Parallel()
const (
@ -105,6 +624,18 @@ func TestDelete(t *testing.T) {
toDelete := append([]slowPrefixEntry[int](nil), all4[deleteCut:]...)
toDelete = append(toDelete, all6[deleteCut:]...)
defer func() {
if t.Failed() {
for _, pfx := range pfxs {
fmt.Println(pfx.pfx, pfx.val)
}
fmt.Println("")
for _, pfx := range toDelete {
fmt.Println(pfx.pfx, pfx.val)
}
}
}()
slow := slowPrefixTable[int]{pfxs}
fast := Table[int]{}